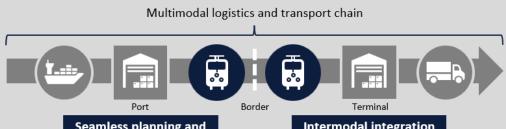


Planning Problems in a Combined Yard and Intermodal Rail Freight Terminal

The SmartRaCon 6th Scientific Seminar, October 2024 Marie Lindland, SINTEF

The FP5 TRANS4M-R Project

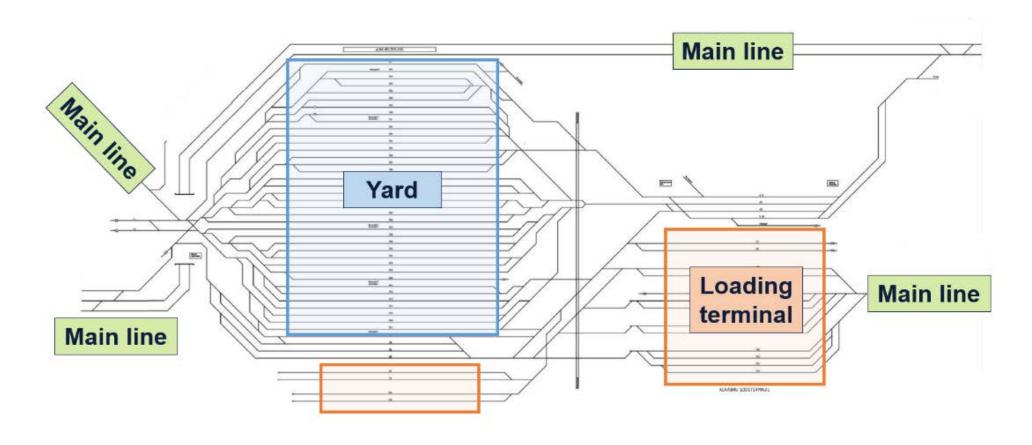
Transforming Europe A Rail Freigt


Establish rail freight as backbone of the lowest emission and most resilient logistics chain in Europe

Seamless Rail Freight: Freight specific functions and capabilities for an integrated end-to-end train path and service planning

Seamless Rail Freight

Seamless planning and dispatching


Intermodal integration and prediction

Yards and intermodal terminals

Critical railway handover points

Enabling seamless planning

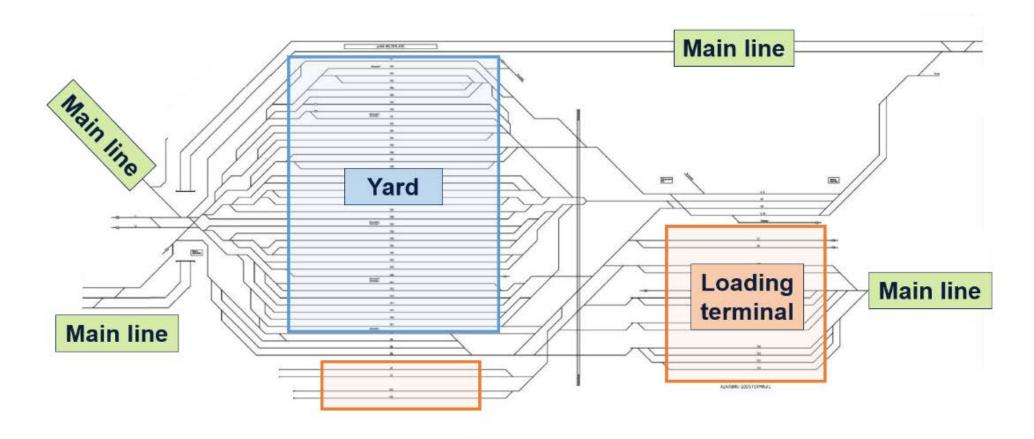
Which challenges arise when areas are combined?

> How do they affect the planning processes?

How can they be solved?

Challenges related to planning

Time horizons	Competition	Related problems
Long-term Short-term Real-time	Unreliable input data Technical data- sharing Collaborative costs Self-selected KPIs	Planning in isolation Decisions for one yield constraints for another Uncoordinated processes Few qualified people



Loading track assignment

Use-case in WP26/WP27, The Alnabru Terminal (Oslo, Norway)

Loading track assignment

Use-case in WP26/WP27, The Alnabru Terminal (Oslo, Norway)

Decision Intelligence (DI)

Decision: Exploring, evaluating, comparing and making decisions efficiently

Intelligence: Leveraging artificial intelligence-methods, e.g. machine reasoning and information processing

Aims of DI:

- Not replacing but empowering planners
- Model, align, monitor and execute informed decision-making processes
- Reduce heavy human dependence
- High quality of proposed solutions

For rail freight: Enable more coordinated planning

Track Assignment Planner

Technical Enabler demonstrated through FP5 TRANS4M-R

An interactive planning system using DI

Plans computed using mathematical optimization algorithms

Time horizons: Long-term plans from the applications, short-term/real-time automatic rescheduling

Competition: Fairness-oriented objective, illustrative and interactive system, ãwhat-ifô analysis

Related problems: Recieve updated information, extend algorithms to include yard problems (next wave!)

Future work

Planning Problems in a Combined Yard and Intermodal Rail Freight Terminal

- Algorithmic improvement of the DI
- System development
- Testing with operators and IM at Alnabru
- Demonstration planning

Questions?

Contact
Marie Lindland, SINTEF, Norway
marie.lindland@sintef.no

